
Appendix A: Descriptive Statistics

Mean Std. Deviation Minimum Maximum

Age 53.14 9.21 21.78 81.23

Gender 0.33 0.47 0.00 1.00

Left-Right Ideology −0.09 0.48 −0.81 0.82

Integration Ideology 0.23 0.53 −1.00 1.00

Left-Right Distance 0.05 0.07 0.00 0.85

Integration Distance 0.14 0.22 0.00 1.31

Group Leader 0.07 0.25 0.00 1.00

Natn’l Election Time 2.34 1.30 0.00 5.00

Majoritarian 0.28 0.45 0.00 1.00

Natn’l Party Seat % 29.32 17.36 0.00 63.90

Natn’l Party in Gov’t 0.50 0.50 0.00 1.00

Integration Bill 0.23 0.42 0.00 1.00

Absolute Majority 0.11 0.31 0.00 1.00

Group RCV Sponsor 0.24 0.43 0.00 1.00

Group Vote Defection 0.04 0.20 0.00 1.00
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Appendix B: Estimation Details

Bayesian CREM estimation requires the analyst to specify prior probability distributions for the model

parameters β, σ2
m, and σ2

v in equation 1 in the main text. Following Browne & Draper (2000) and

Browne, Goldstein & Rabash (2001), we adopt a diffuse multivariate normal prior for the p fixed effects,

β ∼ Np(µ0,Σ0), where µ0 = 0 and Σ0 = 106I. Similarly, we select scaled inverse χ2 priors for the

variance terms, σ2
m ∼ SIχ2(vm, s2

m) and σ2
v ∼ SIχ2(vv, s

2
v), where vm = vv = 2 · 10−3 and s2

m = s2
v = 1.

By choosing these prior distributions we indicate that we are uncertain about β and assume that the

random intercepts are all close to zero, a priori.

Rabash & Browne (In Press) describe a Gibbs sampling algorithm for estimating a CREM with

continuous responses. We take advantage of the latent variable interpretation of binary regression and

a data augmentation (Tanner & Wong 1987) technique introduced by Albert & Chib (1993) to convert

this continuous response estimation algorithm into one that can estimate the BRM in equation 1 in the

main text. This algorithm treats the random intercepts ζ(m) and ζ(v) as latent variables and introduces

a new vector of latent variables z, such that

zi = xiβ + ζ
(m)
m(i) + ζ

(v)
v(i) + εi (2)

where we assume each independent and identically distributed εi ∼ N(0, 1) and

yi =


0 if zi ≤ 0

1 if zi > 0.

(3)

This is the familiar latent variable specification of the probit BRM and implies that

Pr(yi = 1|β, ζ
(m)
m(i), ζ

(v)
v(i)) = Φ

[
xiβ + ζ

(m)
m(i) + ζ

(v)
v(i)

]

or, in other words, the latent variable specification in equations 2 and 3 is equivalent to the binary

response CREM described by equation 1 in the main text. This parameterization of the model in equation

1 suggests a Gibbs sampling algorithm1 that incorporates the following steps in each iteration (n(c)
k is

1Gibbs samplers iteratively sample from the posterior distributions of subsets of the model parameters conditional on
current simulated values of the remaining parameters—a process that eventually converges to the model parameters’ joint
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the number of observations in the kth unit of classification c, nm is the number of MEPs and nv is the

number of votes):

1. Simulate β from f(β|z, σ2
m, σ2

v , ζ
(m), ζ(v)) ∼ Np(β̂, D̂), where

• D̂ =
[
X′X + Σ−1

0

]−1

• β̂ = D̂
[∑N

i=1 x′idi + Σ−1
0 µ0

]
• di = zi − ζ

(m)
m(i) − ζ

(v)
v(i)

2. Simulate each ζ
(m)
k from f(ζ(m)

k |z,β, σ2
m, σ2

v , ζ
(v)) ∼ N(µ̂(m)

k , D̂
(m)
k ), where

• D̂
(m)
k =

[
n

(m)
k + 1

σ2
m

]−1

• µ̂
(m)
k = D̂

(m)
k

[∑
i s.t m(i)=k

(
zi − xiβ − ζ

(v)
v(i)

)]
3. Simulate each ζ

(v)
k from f(ζ(v)

k |z,β, σ2
m, σ2

v , ζ
(m)) ∼ N(µ̂(v)

k , D̂
(v)
k ), where

• D̂
(v)
k =

[
n

(v)
k + 1

σ2
v

]−1

• µ̂
(v)
k = D̂

(v)
k

[∑
i s.t v(i)=k

(
zi − xiβ − ζ

(m)
m(i)

)]
4. Simulate σ2

m from f
(

1
σ2

m
|z,β, σ2

v , ζ
(m), ζ(v)

)
∼ Gamma

[
nm+vm

2 , 1
2

∑nm
j=1(ζ

(m)
j )2 + vms2

m

]
5. Simulate σ2

v from f
(

1
σ2

v
|z,β, σ2

m, ζ(m), ζ(v)
)
∼ Gamma

[
nv+vv

2 , 1
2

∑nv
j=1(ζ

(v)
j )2 + vvs

2
v

]
6. Simulate each zi from the truncated normal distributions

f(zi|yi,β, σ2
m, σ2

v , ζ
(m)
m(i), ζ

(v)
v(i)) ∼


N(0,∞)(xiβ + ζ

(m)
m(i) + ζ

(v)
v(i)) if yi = 1

N(−∞,0)(xiβ + ζ
(m)
m(i) + ζ

(v)
v(i)) if yi = 0

This algorithm directly simulates from the posterior distributions of not only the fixed coefficients and

random effects variances but also from the posteriors of all three sets of latent variables, allowing the

analyst to work with the estimated posterior distributions of the random intercepts and to perform

residual analysis based on z using familiar techniques from linear regression modeling.

In our analysis of MEP voting behavior, we estimated each model by running the Gibbs sampler

for 60,000 iterations, discarding the first 10,000 iterations and retaining every 50th iteration for a final

posterior distribution. For an introduction to Gibbs samplers, and MCMC in general, see Gelman, Carlin, Stern & Rubin
(2004) or Gill (2002).
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posterior sample of 1,000 observations. Standard diagnostic tests generated results consistent with chain

convergence for all three models and results are robust to variation in chain starting values and prior

specification. In addition, penalized quasi-likelihood estimates of logistic versions of these models produce

substantively similar results to the MCMC probit approach. We performed all MCMC computation in

C++ using the Scythe Statistical Library (Pemstein, Quinn & Martin 2007).
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